Roles for composite objects
in object-oriented analysis and design

Franco Civello

Computing Department,University of Brighton
Watts Building, Lewes Road, Brighton BN2 4GJ, UK.
frc@brighton.ac.uk

Abstract

A method is presented for using composite objects
which separates their role and meaning as models of
relations between problem-domain concepts from their
role and meaning as models of hierarchical softwarc
structures. The meaning ol composite objccts is
analysed in terms of connections between real-world
concepts in object-oriented analysis and bctween
software objects in object-oriented design. By
capturing the designer's rationale for model
transformation, the resulting models are casicr (o
understand and maintain. An embedded systems
example illustrates the approach.

1 Introduction

A composite object has a complex intemal structure
defined in tcrms of other objects.
A whole-part association (WPA) cxists between the

class of the composite object and the classes of cach of

1ts composing objects.

The purpose of a WPA is to describe the common
properties of the whole-part links that instantiate i,
just as a class describes the propertics common 1o all
its instances [Rumbaugh, Blaha, Premerlani. Eddy,
Lorensen 91] .

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1993 ACM 0-89791-587-9/93/0009/0376...$1.50

However, classcs have a well-established semantics
and can be described in object-oriented programming
languages, whereas there is no standardization of
mcaning and usc for WPAs between classes ([Rubin
and Goldberg 921, [Monarchi and Puhr 92]).

This paper presents a method for the definition and
use 0f WPAs (and henee composite objects) in object-
oriented analysis (OOA) and object-oriented design
(O0OD). The method is based on the view that WPAs
are used for different purposes in OOA and OOD. In
OOA, WPAs capture semantic properties of the
problem-domain, whercas in OOD they capture
semantic properties of the software. The nature and
range of thesc properties and the method used for
scparating them is illustrated with an example of an
cmbedded control system.

Section 2 introduces a notation and terminology for
wholc-part associations and composite objects. In
section 3 the method is presented in outline and the
motivation behind it is discussed. In section 4 the
requirements of the example application are presented.
Scction 5 discusscs the use and meaning of WPAs in
OOA. Scction 6 discusses the semantic properties and
the use of WPAs in OOD. Finally the benefits and
limitations of the method are discussed and ideas for
further work arc prescnted.

2 Notation and terminology

A whole-part association (WPA) is an association
belween two classes, the composite or whole class
and the parr class. To distinguish WPAs from other
associations, the OMT convention of drawing a

OOPSLA’93, pp. 376-393

376

diamond shape on the association link, next to the
whole class box, is adopted (Figure 1). A WPA is
instantiated by a link between a composite (or whole)
object and a part object.

A whole-part structure [Coad and Yourdon 91]
includes a composite class, all of its part classes and
all the WPAs between the composite and its parts. The
classes Car and Engine and their WPA form a whole-
part structure.

The Car-Engine WPA is mandatory in both
directions, i.e., each Car must have an Engine and
each Engine must be part of a Car. Other WPAs may
be optional in one or both directions.

Car

1

1
Engine

Figure 1: a whole-part association
2.1 Aggregates and Collections

Two patterns of whole-part associations recur
frequently in object-oriented models. Aggregates
[Coad and Yourdon 90] are patitems where a class has
several named part classes, cach with multiplicity 1
(Figure 2). The name of a part class can be omitted
from the diagram if no ambiguities can arise (c.g.,
Text in TextBox).

TextBox

&

Text Button enter Button cancel

Figure 2: an aggregate

By dcfault, a WPA is tdken to be a (1) to 1
association: i.c., an instance of the whole class needs a
link to one instance of the part class, whereas an
instance of the part class can exist without a link o an
instance of the whole class. (Each TextBox needs a
Text and two Buttons, but Text and Button objects do
not exist just as parts of a TextBox).

The sccond recurrent pattern of association is the
collection, in which a composite object is linked to
many part objccts of the same class.

Drawing

(m)

Shape

Figure 3: a collection

For example, in a graphical editor for geometrical
drawings, we can model the association between the
class Drawing and the class Shape, of which elements
of the drawing are instances, as a collection (Figure
3).

Book

A

Index

7

Contents
Table

m

Chapter

e

Introduction Section

Figure 4. a multi-level composite

377

2.2 Composition hierarchies

To model complex hierarchies of objects, il is often
necessary for a part class in a WPA 10 be the
composite class in another. So whole-part associations
can induce multi-level object composition hicrarchics
(part-of hierarchies) (Figure 4).

3 Rationale and outline of the method

WPASs can be used to model "part of" relationships
between entities in a domain (e.g., OMT [Rumbaugh
et al. 91], OOA [Coad and Yourdon 91]) and to
control design complexily by cncapsulating the parts
of composite objects (e.g., OOAD [Booch 91], HOOD
[Robinson 92}, [deChampeaux 9111). These two
goals are difficult to separate by looking at 4 finished
model, as this not only attempts to reflect the structure
of a problem domain, but is also "designed” to be
understandable, manageable, rcusable, resilient to
change and to result in software with desired
computational features, such as performance and
physical distribution. This situation arises from the
twofold purpose of object-oriented modcels; o describe
the structure and behaviour of entitics in the problem
domain (analysis), and to describe the structure and
behaviour of the software components of the system
(design). During OOD an object modcl is refined and
transformed to address design issues that are not
considered in analysis [deChampeaux, Lea and Faure
62]. New WPAs can be created. Existing oncs arc
viewed from a new, software perspective and can
therefore change their propertics or acquire new ones.
When a model undergoes substantial transformation
during design, it is vital that the analysis modcl,
reflecting the client's and analystl's understanding of
the problem domain and system requircments, is
preserved. The transformation steps must also be
recorded. This way, when the requirements change or
are extended, the analysis model can be modificd and

ldeChampeaux (91) uses the term ensemble 10 refer to
special kinds of composite objects that encapsulate their
components. This conceplt is subsumed by the
categorisation of composite objects given in this paper,
where encapsulation is only one of the design roles of a
composite.

the transformations checked for consistency with the
new requircments. If the design model is modified
directly, problem and solution domain issues cannot
be distinguished and considered separately. This
makes system evolution harder 10 control and more
error-pronc.

It follows that WPAs must be documented so that
their analysis and design properties, and the different
constraints and dccisions they reflect, can be
separately identified.

Furthermore, within their analysis and/or design
roles, WPAs can be used for multiple and different
purposes which affect their semantics. This view is
supportcd by rescarch in cognitive psychology
[Winston et al 87], which has shown that therc arc
different types of part-whole relations (meronymic
relations) between concepts, with different semantic
connotations. For cxample, the whole-part relations
Person-Arm and Company-Person are scmantically
diflerent2,

This variety of purposes and secmantics is not
supported by the notations of current object-oriented
mcthods, which tend to bury il under a single
nolational construct, ending up with a concept too
broad in scopc to have a precisc meaning or a useful
role within the development process. Table 1
summarizes the terminology and approach of a
representative sample of current object-oricnted
methods.

A striking feature is that those methods that use
WPASs tn the analysis stage (e.g., OMT, OOA) do not
distinguish between WPAs and other class
associations in design and implementation, whereas
those methods that usc them for software design
purposes (c.g., Booch, HOOD) do nol extend into the
analysis stage. Thus no existing method gives rules or
guidelines for using WPAs throughout analysis,
design and implementation. In fact, the difference
between WPAs and other associations is often only
cosmetic and diagrammatic. While it is generally
acknowledged that whole-part associations bind

2The transitivity property (i.c., if A is part of B and B is
part of C, then A is part of C) is lost when relations with
different semantic propertics are involved (my Arm is not
part of my Company).

378

classes more strongly than other associations, there are
no further rules or constraints to guide design and
implementation decisions. For examplc, the duties of a
composite object as owner and manager of ils parts are
not sufficiently elaborated by any existing method,
although the TROLL language [Hartmann, Jungclaus
and Saake 92] allows the representation of structural
and behavioural connections between a composite and
its parts.

This paper proposes a method for using and
documenting whole-part associations throughout
model development, that addresses the problems
mentioned above:

» In OOA, WPAGs are shown individually alongside
other associations and are named explicitly in precise
domain-specific terms, rather than in generic temms
such as ‘is part of” or ‘includes’. In addition, cach

aggregate and collcction is classified as belonging to
one of three semantic patterns and textually annotated
accordingly. This requires the developer to invest
more resources in understanding the domain better,
but it pays dividends in later stages by making the
model casier to comprehend and providing more
precise guidance for the designer.

« In OOD, more emphasis is placed on the object
composition hierarchy rather than individual
associations. The design properties of each whole-part
structure are captured using annotations. A rationale is
given for cach composite object in the object
composition hierarchy by cross-referencing
corresponding WPAS in the analysis model and/or by
stating its design purposc within the model. This gives
traccability of WPAs by documenting the rationale for
the transformation between the analysis and the design
model.

OO0A OOAD OMT CRC Objectory HOOD

Source [Coad and [Booch 91] [Rumbaugh [Wirfs-Brock | [Jacobson 92] [Robinson 92]
Yourdon 91] et al. 91] et al. 90|

Notation Yes Yes Yes No No Yes

support for

WPAs

Terminology | whole-part | 'has’ aggregation | 'part of’ ‘consists-of’ ['include’
structures relationship | (whole-part | relationship | relationship | relationship

association)

Problem- strong weak strong weak weak none

domain (pervasive (parts’

modelling organising ommon

semantics principle) propertics)

Variations | container by-value none container none none
collection by-reterence composite
asscmbly

Definable optionality | optionality | optionality | none none none

properties | multiplicity | multiplicity | multiplicity

Software none ownership/ | none none none encapsulation

design encapsulation /delegation

semantics

Relevance fair major minor minor minor major

in method

Main mental aid abstraction/ | problem- mental aid mental aid decomposi-

purpose in analysis/ | decomposi- domain in design in modelling | tion/
subsystem tion/hiding | modelling design/
identifica- distribution
tion

Table 1: summary of

use of WPAs in representative miethods

379

4 The example system

The system specification is derived from a published
example of real-time structured design techniques
[Ward and Mellor 85]. The system consists of a
number of bottle-filling lines fed by a single vat
containing the liquid to be bottled. Figure 5 shows
some of the details of the vat apparatus and of a
representative bottling line. Because of the single val,
the composition of the liquid being placed in the
bottles is the same for all lines at a given time.
However, the bottle size may differ from line to line.
The tasks of the control system arc (o control the
level and the pH of the liquid in the vat, to manage the

pH control

valve
input
control vat
valve

movement and filling of bottles on the various lines,
and to exchange information with human operators
working the individual lines and with a supervisor
monitoring the entire system.

The vat level control is accomplished by monitoring
the level with a sensor and adjusting a liquid input
valve accordingly. The requirement for controlling pH
arises because the liquid to be bottled reacts with its
surroundings, causing the pH 10 “creep’ over time. A
constant pH is maintained by introducing, through the
pH control valve, small quantities of a chemical that
reverses the pH ““creep”.

level
SENSOT

bottle
release

pH gate
sensor |
bottle
filling
valve
labeller
bottle
contact

scales

Figure 5: the physical structure of the bottle filling plant, excluding the supervisor and the operator interfaces.

Only one bottle filling line is shown.

380

Bottles to be filled on a particular linc are drawn
one by one from a supply of botties, as follows:

. A bottle is released from a gate and drops
down a chute onto a scale platform, at the same time
depressing a bottle contact sensor. The bottle is
weighed empty.

. The botile-filling valve is opened, and a
measured amount of liquid is let into the bottle. The
weight of the bottle plus its contents is used 10
determine when the bottle is full and to shut off the
valve.

s The filled bottl

pH when filled, and thc nominal pH. The linc opcrator

¢ is labelled (o show the actual
caps and removes the {illied botile, and signals the
systems that the bottle has been removed. Removing
the bottle releases the bottle contact sensor, removes
the weight on the scale and allows the next bottle to be
released from the gate.

The line opcrators can signal the system 1o start and

The line operators can signal the syster Lart ar
stop individual lines, and the supervisor can signal the
system to enable or disable the operation of all the
lines. The line operators are given displays of the line
status and are able to change bottle size for the line.
The area supervisor is given a display of the current
status of the system pH, vat liquid level and statuses
nftha individnal inag and i¢ -

01 INC mMaiviauar 1ines, ana is able to control the pri of
the bottled liquid by entering a ncw desired pH to be

maintained.

If, during operation of the system, the pH goes out
of limits (>0.3 from the sctpoint) all control actions arc
suspended. The vat pH is then stabiliscd manually.

When thc pH is back within limits, the system restarts

+
auivy

5 Whole-part associations in the
analysis model

d during analysis model
connections between objects in the problem domain
(Figure 6). The key class attributes in the model arc
shown inside their class symbol.

The associations provide a basis [rom which
derive the dynamic communication links amongslt

software objects, although they do not prescribe the

dircctions ol the links, nor their implementation
mechanisms?.

The WPAs arc described with domain-specific
terms (c.g., Gale releases bottles on BottlingLine)
rathcr than generic ones (e.g., Gate is part of
Boulmnge) to convey morc preciscly the role of the

5.1 Semantic patterns of object
composition

WPAS can be divided into two catcgories: functional
and non-functional. In a functional WPA the part is
conceptually included in the whole because of
structural and functional connections that make it
possible for it to contribute to the function of the
whole | Winston ct al. 87]. For example, the devices
which make up a BoutlingLine arc structurally situated

and connected in such a way 1o support the function of

the Boulmngm (¢c.g., the gate is connected via the
chute o the platform to which the contact sensor is
attached). Each part object has a function to fulfil that
contribules o the function of the whole object. We call
the parts in a functional WPA components to
cmphasize their cssential role in the association. We

call lhc whole oujcu a

physical systems (c.g., the engine in a car),
organisations (c.g., the headteacher of a school), or
conceptual entities (¢.g., the activitics in a project plan)

fall within this definition.

Non-functional WPAs model looser connections
between whole and part. Such WPAs can be divided

in two categorics: wple-element, and group-member,
corresponding 1o the notions of aggregation and
association relations in Scmantic Data Modelling

3 Additional textual constraints are required 1o capture the
full semantics ol the associations. For examplc it should
be staied thai the sci of Bottlingline objecis linked io ihe
Valt's Supervisor, found following the path 'Vat-
>Supervisor->BoutlingLine’, is the same set of
BoulingLine objects found following the path 'Vat-
>Valve->BottlingLinc'. In other words the Supervisor
supervises all the bottling lines which are fed by the filling
valves, and no others.

381

Supervisor

sysicm status

_—

lsupcrviscs

n

BotingLine

line status
bottle size

a4

operates

Operator

Valve 1 lets liguid in
—_—
measures
Analogue i?V'C_l(qu
iqui In
Sensor ! Vat 1 superviscs
lets pH
val chemical in level
b 1 _LO desired pH
measures desired level
pH of \ 1
liquid in lets
Analogue . liquid
Sensor 1 out of
n .
provides
Valve liquid for
rcleases
Gate | bottle on
labels
Labeller | bottle on
weighs
Analogue bottle on
Sensor L
Senses
presence of
OnOffSensor | bottle on
signals
recmoval of
Button 1 bottle on

Figure 6: Class associations in the Bottle Filling System

(Hull and King 87]. A tuple models a rclation between
two or more entities. The two entities normally exist
independently from cach other. Tuples are aggregales
where the names of the elements convey the roles they
play in the relation (e.g., Marriage(Husband, Wile),
Sale(Purchaser, Vendor, Property), Registration(Car,
Owner)). Often the ple object models an event and

its elements model the entities participating in the
cvent.

Groups are scts of objects brought together by
virtue ol sharing some property or by some other
looser connection. Examples of group-member
associations are: Hotel-Room, Committe-Member,
Document-Page. In the bottle filling plant, should we

382

require to keep track of each bottle [illed, the set of
filled bottles would be modelled as a group object with
no functional relation between whole and parts and no
structural connections between the member objects
(FilledBottles-Bottle).

Just as aggregates and collections provide syatactic
patterns of object composition, so asscmbly-
component, tuple-element and group-member provide
semantic patterns, since they capture the purpose for
which WPAs are being used.

Components in an assembly normally appear as the
named parts in an aggregate pattern, as each has the
ability to fulfil a different function, described by its
name, within the composite. Members in a group, on
the other hand, tend to be parts of a collection. They
are not individually named becausc they all play a
similar role from the viewpoint of their composite and

none of them individually is essential to the function of

the composite object.

So functional WPAs describe stronger, usually
non-optional, links than non-functional ones. Each
composition pattern should be annotated to reflect this
distinction and to justily it. In particular, lor each
group object the analyst needs to state the common
properties that brings together all member objects. For
each assembly, the function of the composite and the
contribution of each component must also be
described.

In the Bottle Filling System (BFS) all WPAs are
functional and non-optional. An example of a model
annotation is given below:

Whole: BottlingLine

Parts: Valve fillingValve, Gate, Labeller,
AnalogueSensor scales,
Button removeSignal,
OnOffSensor contactSensor.

Kind: Assembly

Function: Manages the movement and fillingof

bottles on a single line. It controls the
actions and monitors the state of each
component device.

In summary, WPAs are useful to highlight strong
associations in a problem-domain, bul come in
different flavours and need to be described

accordingly. A designer would be entitled to ignore the
difference between WPAs and other associations if
their meaning was not made clear.

5.2 Other (non-WP) associations

This mcthod of classifying WPASs helps to tell them
apart from other associations, which are sometimes
confused with WPAs :

Spatial or temporal inclusion (¢.g., Room-
Desk, Process-Phasc). Spatial (temporal) inclusion or
proximity is a good heuristic clue to identify a WPA.
However it does not justify a WPA in the absence of
structural or functional connections relevant to the
system responsibility. The filling Valves, for example,
may by physically closer to the Vat than to the
BottlingLincs, but they are functionally closer to the
latter, as their operation depends on events happening
within them.

Spatial {lemporal) inclusion justifies the sharing of
some spatial (temporal) propertics between objects, so
it might form the basis for a group-member WPA, but
it is semantically weaker than a [unctional WPA. Thus
the spatial features of the Pilot-Aircraft association
[Coad & Yourdon 91] do not justify a WPA. Pilots
and Aircralts are independent entities. One just
happens to be insidc the other for a time period. Their
association is semantically similar 1o that between a
remolely-controlled aircralt and its human controller.

Auribution (c.g., Building-Height). Height is
not part ol a building, but one ol its attributes.
Altribution is often confused with whole-part because
the distinction between an attribute and a part of an
object is often lost in an object-oriented
implementation. For example the height of the building
and the heating-system in the building would both be
implcmented as instance variables of class Building in
Smalltalk. Furthermore, in object-oriented modelling
the choice between attribution or WPA can be
subjective as well as purpose and context dependent.
Are the start-point and end-point attribules or parts of a
line segment? The answer depends on the context: are
the delimiting points used just as information holders,
to store and provide access to their coordinates, or do
they have behaviour that can be invoked by their
LineSegment or other objects? In the latter case the

383

two points should be modclled as part objects. Since
such behavioural decisions are often taken during
OOD, an attribute in an analysis model can become a
part object during design.

Class membership (e.g., John Smith - Person).
This is a relation between an instance and its class, not
between two instances. Semantically it expresses the
fact that the properties of John Smith are defined by
the class Person. However if onc takes an extensive
view of meaning for classcs (a class is a set), it is
tempting to treat a class as a collection of all its
instances. Although possible, this is bad practice at
both the conceptual and the practical level. At the
conceptual level, it confuses thc member-collection
relation, based on the conneclions between or the
extrinsic properties of a group of objccts, with the
class membership relation which is bascd on the
intrinsic properties of the class members. At the
practical level it creates a computational abstraction
with two distinct responsibilitics: defining and creating
instances of a class, and keeping and managing the
instances of the class. The latter is usually application
and context dependent whereas the first is fixed. In

addition, there is often a need for distinct collections of

objects of the same class in an application. The
extensive approach creates a displeasing asymmetry
between how different collections of objects of the
same class are handled.

6 Whole-part associations in the design
model

The WPAs in the design model are shown as an object
composition hierarchy (Figure 7) to emphasize that
their main role is in structuring the software system as
opposed to modelling the problem domain.

Whereas a problem-domain association captures, in
application-related terms, the purpose for which
objects are linked, composite objects place objects
(and hence their classes) in a logical hicrarchy, so that
software can be designed in layers of abstraction, with
functional responsibilities suitably distributed among
the layers.

Some WPAs in the object composition hierarchy do
correspond to problem-domain class associations, in
which case the relevant links arc replicated across the

two diagrams (e.g., BottlingLine - Gate). Others do
not have such semantic support in the class association
model, but arc introduced to makc the model more
suitable o a soltware realisation (have a design role
only).

6.1 Semantic properties of WPAs in a
design model

In OOD, a WPA models a part-of relation between
soltwarc objects, not between real-world entities or
concepls. Therefore, its semantics should be based on
properties of software links.

However it is counter-productive o give necessary
and suflicient conditions for calling a software link a
wholc-part link. The resulting conditions are either too
prescriptive or 100 broad, and therefore unhelpful. The
rcason is that the concept of whole-part association in
softwarc has too many facets and shades and so defics
excessive simplification.

It is more [ruitful to consider the primitive
properties of cach WPA and annotate the model
accordingly. This way the designer is free to use
WPAS as he or she sees appropriate, provided some
minimal necessary conditions are satisfied, but is also
forced 1o define what is meant by cach WPA.

The list bclow is an attempt (o establish the
primitive semantic properties of software links on
which WPAs are bascd.

Visibility. A nccessary (but not sufficient)
condition for an object 10 be part of another is that the
whole object has the ability o send messages to the
part. Thus the composite class is a client of the part
class. The converse may also be true if the application
requires it. In MacApp and other GUIs, for example,
cach View holds a reference Lo its enclosing View in
order Lo propagalc cvents.

Encapsulation. An cncapsulated (or nested)
object is only visible within the scope of its
cncapsulating object. A composite object may
cncapsulale its parts, making its intcrnal structure
invisible to its clicnts. Current programming languages
do not fully support cncapsulation, as a private
instance variable can be assigned to a method
argument, making the part object visible outside the

whole object. Component objects should be

384

encapsulated by their assembly to separate the external
functionality of the assembly from its inlernal structurc
and functions, just as in real lifc complex artcfacts
present a simple external interface that shiclds the uscr
from their intemal workings. Elemcnts of a tuple are
not usually encapsulated by the tuple, as their function
within a system is not just subsidiary 10 the tuple.

Encapsulation can be further constrained or relaxcd
by limiting or extending the visibililty within and
across the composite object:

Inward Visibiliry. A client of the encapsulating
object can use the encapsulated object, but only by
obtaining a dynamic (i.c., released after method
completion) reference to the latter, from the former,
during execution of one of the client’s methods. This
is similar to Hogg’s (91) islands, with the whole
object playing the rolc of bridge. Islands limit the
scope in which an object can be statically aliased,
making a design more amenable to proofs of
correctness [Hogg 91].

Qutward visibility. The encapsulated object may be
granted static or dynamic visibility to objects outside
the scope of the encapsulating object. In the Botle
Filling System, for example, a BottlingLinc has
visibility to the Vat, to obtain pH data.

Inward and/or outward visibility arisc from
associations between a part class and classes outside
its composite (e.g. through its Valve, BottlingLine has
an association with Vat (Figure 6)).

Whole-independence. A whole-independent part
has no visibility to its whole.

Peer-independence. A peer-independent part has no
visibility to other parts of the same wholc.

Separate part. A part that is both peer- and whole-
independent. Such an object depends only on its own
parts, if any. An object composition hierarchy where
all parts are separate induces a strictly hicrachical
interaction scheme, in which cvery sub-tree of the
object composition hierarchy is totally sclf-contained.
Strict hierarchics enhance robusiness of designs at the
expense of flexibility.

Sharing. An object is shared if two or more
objects hold references to il. A parl object can be
shared by multiple composites (c.g., a programmer
can be a member ol a development tecam and of a
qualily review group).

A shared part object cannot be encapsulated, as it
must be visiblc o more than one composilte.

Part-Whole Inseparability. A separable part
can be disconnected from its whole. An inseparable
part cannot.: its existence depends on the existence of a
connected wholc. For example cach filling Valve is
inscparablc from its FillingStation (Figure 7). A
scparable part can be created by some other object and
subscquently acquired by the whole; or released from
its whole and passed on (o another object. For
example the messages in a mailbox are produced
somewhere clse and inserted into (acquired by) the
maitbox. Later they will be released to be used and
kept or deleted by some consumer object.

Whole-Part Inseparability. The existence of
the wholec object may depend on the existence of the
part object. An inseparable whole will create or import
its part at creation time. The part object cannot be
deleted without causing the deletion of the whole. For
example, an OperatedLine depends on the existence of
a BottlingLine and an Operator (Figure 7).

Inseparability is therelore about the relation
between the objects' lifetime. If a part is inseparable
from its whole, then its lifetime is included in that of
the wholc object (Figure 8). Conversely, if a whole is
inseparable [rom its part, then the lifetime of the whole
is included within that of its part (Figure 9). Mutual
inseparability (part-whole and whole-part) means that
the two lifctimes coincide (Figure 10). It is usual for
assemblies and their components to be mutually
inseparablc, lor tuple objects to be inseparable from
their elements, and for members in a group to be
scparable from their whole.

Together, the properties of inseparability and
encapsulation correspond 0 ownership, or has-by-
value rclationship in Booch (91). Keeping the two
propertics scparate provides grcater modelling

385

BottleFillingSystcm

O

Vat Supervisor OpcratedLines
A
m
LiquidLevelControl PHControl OperatedLine
A A
Analoguesensor Valve inputValve
levelSensor
BottlingLinc Opcrator
A A
AnalogueSensor Valve pHValve
pHSensor

[l I l

Labeller FillingStation Gate Buuion
removeSignal
A
Valve filling Valve AnalogucSensor OnOIfSensor
scalePlatform contactSensor
Figure 7: Composite object hierarchy in the Boule Filling Svstem
flexibility (e.g., inseparability with no encapsulation). object would be involved. Thus the entity modelled by

Immutability. In an immutable WPA (he identity the whole object would no longer be the same entity if
of the part object cannot change {Odcll 92]. For onc ol its parts changed. In an immutable WPA, the
example, in a Marriage, the identity of the husband or part is separable from the whole, bul the whole is not
wife cannot be changed. If it did, a different Marriage scparable from the parl. An inseparable part cannot be

386

mutable, but an inseparable whole may have a mutablc
part. A sailing boat, for example, needs a sail
(inseparability), but the sail can be changed for an
equivalent sail without affecting the function of the
boat. Thus it is the role of the part that is essential, but
not its identity.

Ownership. Ownership and encapsulation of a
software object are treated as synonyms by some
(e.g., Booch (91), Atkinson (92)). Instead, we deline
ownership in terms of the way that the destiny of the
whole and part objects are interlinked. More precisely,
an object owns another if deletion of the whole object
implies deletion of the part object. This definition of

ownership is a pragmatic one: it allows us to represent
situations where an object is owned but not
encapsulated by another object and where creation and
deletion ol the same object are carried out by different
objects (this is quite common with objects that
represent dynamic real-world objects that undergo a
series of processes before coming to the end of their
life). Also note that ownership is weaker than
inseparability: for example a member object owned by
a group may be owned by the group but also separable
from it (it can be released and continue its existence
outside the group).

Delete
Bottingline

Co-cxistence period Delete

Creale
Whole object's lifetime ——pp» Z—--
Creale
Parl object's lifetimc ——4»

Bottle

Figure 8: An example of an inseparable software part: a BonlingLine creates a Bottle, tracks it
and destroys it when it leaves the line. In real life the bortle s not inseparable from the line.

Create Delete
. o Sale
Whole object's lifetime >
Acquire l Co-existence period lReleL‘C
Part object’s lifctime ~ ———9» o —— 5
l i
I Create ropert Delete

Figure 9: An example of an inseparable software whole: a Sale cannot exist without
a Property. The part object in this case precedes and survives the whole object.

Crealc

Whole object's lifetime »

Delete
BotlingLine

Crcale l
Part object’s lifetime >

Co-cxistence period

lDechc

Gate

Figure 10: An example of a mutually inseparable WPA: the lifetimes of a BoulingLine and a
Gate coincide.

387

objects (called containers by Wirfs- Brock et dl (90))
the whole objects do not call operations on their part
objects nor viceversa, normally, strong collaborations
exist between a whole and its parts. The nature of such
collaborations is application dependent, but a few
general categories can be identified.

Constraint Maintenance: where a constraint must
hold that involves all or some of the parts, the
composite object can take charge of ensuring that the
constraint is satisfied. A special case of collaboration
arising from the need to maintain a constraint is
propagation [Rumbaugh et al 91], which occurs when
the value of an attribute or link is shared between the
whole and its parts. Changes to the value must be
propagated or broadcast 10 each part object.

Configuration. A composite object can be
responsible for configuring its part objects. Wec
distinguish internal from external configuration. The

former involves binding an object to other objects in

AUI2I0E 1AV RAL wililaia VUJLLL AU VLT VULV

the system; the latter sets up a link between an object
and an interacting entity in the system environment.

Internal Configuration. Part objects often
collaborate with their peers, and, sometimes, with
clients or servers of their whole. A wholc object is
ideally placed to set up such links, as it provides the
context within which its parts operatc. Intcrnal
configuration of part objects by their composite objects
makes the part objects context independent and
therefore more reusable [Kramer, Magee, Sloman and
Dulay 92].

External Configuration. Interface objects modelling
entities in the physical system environment that interact
directly with the system need to bc externally
configured. If the physical interfaces are arranged into
structures or sets corresponding to the whole-part
structures in the object model, then it is convenient for
composite objects to set up the links between their
parts and their physical counterparts.

Delegation of active behavipur. Objects can be
passive or active. An active object has its own
execution thread. Active objects are denoted by an "A"
in the lower right comer of their icon (Figure 7). For
the sake of conceptual simplicity, an object can have at
most one execution thread [Kramer et al. 92].

lCl pdbblVC or

However, composite objects, whet
active, may include active parts. So complex dynamic
behaviour within an object can be decomposed by
delegating part of it to the object's parts.

A simple and easily verifiable case of algorithmic
decomposition arises where a complex state in the state
chart of an object (i.e., a state with an internal activity
that can itself be represented as a state chart) is
transformed into a component object.

Control. The dynamic behavior of an object can be
modelled as a finile stale machine. States are
abstractions of the values and links held by an object,

e’ in differemt

pehaviours: in gifferent

and rr“ntr‘cr\nl s I‘h\nnunnn al behavio

states an object recacts differently to the same event.
Transitions between states are caused by events
gencrated by other objects or by events external to the
model. Sce Coleman (91) for how to use object
charts, an cxlension to stale charts [Harel 87], to
model dynamic ObJC(,l bghawour

An nhie -

7
i w \/\/ Lisrei

it (i.c. sends it messages that fire transitions between
states). In principle events can be generated across any
object link. However the complexity of object
interactions, and with it the potential for data
corruption, race conditions or deadlock, is reduced if
objects do not mutually controt each other and if
control links are kept to a mimimum and explicitly
documented in a model.

The object composition hierarchy can be used for
the purpose of reducing bchavioral complexity by
giving compositc objects the role of sole controllers of
their active parts. This should not be considered a rigid
rule but only a flexible guideline to be applied as long
as it does not distort the correspondence between the
modcl and the problem-domain.

In the Bottle Filling System, for example, each
composite object is the sole controller of its active
parts (there are no shared active parts), except in two
cases where the control relationships are already clear
in the problem domain: Supervisor controls Vat and
Operator controls BottlingLine.

Most of the semantic properties discussed above are

not directly supported by current object-oriented
programming languages; however, as they imposc

388

important constraints on the implementation, they
should be explicitly captured in an object-oriented
model.

6.2 Design rationale for composite
objects

Just as the properties of cach whole-part structure
must be documented to guide the implementation
process, so the purpose of cach composite object must
be documented to help understand the design model
and its derivation from the analysis model. To
illustrate the approach, the rationale for cach whole-
part structurc in the BottleFillingSystem is discussed,
and the semantic propertics of cach arc documented.

We proceed top-down, depth-first down the object
composition hierarchy in Figure 7.

Whole: Bottle Filling System
(models entire system)
Parts: Vat, Supervisor, OperatedLines
Kind: Assembly
Rationale: Top-down Decomposition.
System Partitioning into separate,
cohesive parts
Properties: Mutual inseparability, Configuration,

Behaviour delegation

The whole system is modelled as an asscmbly,
whose components are subsystems with scparatc
functional responsibilities. This structure is derived
from the analysis model in three steps:

1. Partition the classcs into a small number of
groups, so as to minimize the number and strength of
the inter-group links (Figure 11). WPAs bind morc
strongly than other associations - this is why filling
Valves end up in the same partition as the
BottlingLines. If shared WPAs are involved, then
assemblies are considered stronger than groups and
groups stronger than tuples. These guidelines help to

minimise interactions amongst different branches of

the hierarchy.
2. Select a key class in cach group and model the
whole system as a composite formed by objects of

these classes (Figurc 12). Botulinghine has been
renamed OperatcdLine to beller convey its role.

3. Introduce a new object 1o manage the collection
of OpceratedLinc objects (Figure 7).

1 | Supcrvisor |

J

20

4 4)
1 Bottling Line
Vat
1
]
n Valve
Objects hinked Objects linked to

\o Vat I\ BoulingLine J
Figure 11: Partitioning the model to identify top-level
abstractions

BottleFillingSystem

T I

Supervisor OperatedLine

Va

Figure 12: The system modelled as a composite object

Whole: OperatedLines

Parts: OperatedLine

Kind: Group

Rationale: Simplify top-level decomposition
Properties: Ownership, Constraint maintenance,

Message broadcasting, Configuration

This composite object does not model a specific entity
in the problem domain. It is used to collect together all
the BottlingLines (and their Opcrators), in order to
simplify the top-level system structure by taking
charge of the management of the OperatedLine objects.
It cnsures that all its member objects have the same
valuc for their status attribute

389

(disabled/enabled/suspended). To maintain this
constraint, OperatedLines is responsible for
broadcasting supervisor messages to its members.
OperatedLines does not encapsulate its members, so
the Supervisor can share a reference to a single
OperatedLine if necessary. Also no internal links
between OperatedLine objects are required, as the lines
in the plant operate independently from each other.
However, each BottlingLine within each OperatedLine
needs a link to the Vat to find out the liquid's pH to
print on the label. Such a link is cstablished as
follows: BottleFillingSystem passes a reference to the
Vat to its OperatedLines component, which in turn
broadcasts it to each OperatedLine, and so on. So the
composition hierarchy is used recursively to configure
objects that necd links to others in different branches
of the hierarchy.

As a result of this transformation,
BottleFillingSystem is no longer a combination of an
assembly and a group, bul just an assembly: the
grouping responsibility having becen delegated down to
the new object. This reflects more accurately the
meaning of the top-level decomposition: cven though
individual lines are dispensable and not lunctional
components of the system as a whole, the sct of lines
is a functional component of the system. Objects
modelling entire systems can often conveniently be
modelled as assemblies of functional components.
Any grouping composites can be pushed one level
down in the part-of hierarchy by introducing new
abstractions.

Whole: OperatedLine

Parts: BottlingLine, Operator

Kind: Assembly

Rationale: Encapsulation of association
Properties: Mutual inseparability, Configuration,

Propagation

This aggregate does not correspond 10 an cntily in
the problem domain. Its main purposc is to
encapsulate its two part objects and their association,
to decouple them from the OperatcdLines collection. It
propagates messages coming from the OperatedLines
collection to the Operator object, which communicates
them to the human operator and starts/stops the

BottlingLinc as appropriate. An OperatedLine object
conceals and managcs a BottlingLine-Operator link.

Whole: BottlinglLine

Parts: Labeller, Filling Station, Gate, Button
removeSignal

Kind: Assembly

Rationale: Assembly from problem-domain mode!

Properties: Encapsulation,

External configuration of all parts;
Mutual inseparability,
Configuration,

Behaviour delegation and control of
FillingStation

BottlingLine is derived from the analysis model.
The three devices dircetly involved in the filling
process have been grouped into a ncw assembly, the
Filling Station.

BotdingLinc manages ils components. In particular,
BottlingLine is the only object that can generate events
(c.g., stop_filling, start_[lling) for the FillingStation.
All the part objects (cxcept the FillingStation, sec
below) are device interface objects, i.c., they interface
1o a concrele device. In this system, all such objects
are passive and have no knowledge of their function
within the problem domain, whereas functional
aggregales arc often active and cmbody crucial domain
knowledge (c.g., the BottlingLine knows thal when a
bottle is removed the gate should be opened). This
approach cnhances the reusability of the interface
objects and decreases design complexily by limiting
the number of objects with control responsibilities.

As another example of the allocation of problem-
domain knowledge, the Labeller docs not know what
values it is printing on the labels nor where they come
from. This knowledge pertains to the BottlingLine,
which has a link 1o the Vat 1o find out the values to bc
printed.

Whole: Filling Station

Party: OnOff Sensor contactSensor,
AnalogueSensor Scales,
Valve fillingValve

Kind.: Assembly

390

Rationale: Algorithmic decomposition. simplifies
dynamic behaviour of BottlingLine
Properties: Encapsulation, Mutal inseparabilty,

External configuration of all parts

The FillingStation is a conceptual abstraction with
no corresponding tangible cntity in the problem
domain. It manages the passive objects interfacing (o
the real devices directly involved in filling bottles with
liquid. The FillingStation exhibits behavioural
cohesion. In other words, there exists a process in the
system - "fill one bottle” - that calls at [requent
intervals the services of its three parts. This process is
encapsulated by the Filling Station object. Its
existence simplifies, by decomposition, the dynamic
behaviour of the BottlingLine object. This delegates
responsibility for bottle [filling to the aclive
FillingStation, while retaining responsibility for
starting and stopping the filling process and interacting
with the operator and the other devices in the bottle
filling line.

Whole: Vat

Parts: PHControl, LiquidLevelControl
Rationale: Models a tangible object in the problem
domain and its attributes

Breaks the vat control into two
concurrent activities

Assembly

Encapsulation

(Supervisor visible to PHControl)
Ownership,

Dynamic behaviour delegation

Kind:
Properties:

The Vat is a problem-domain object. Its parts arc
derived from what were attributes in the analysis
model: the liquid pH and the liquid level. The reason
for promoting these 1o the rank of part objects is that
each is associated with a scparalc system activity.
Furthermore the two activitics can be described and
implemented ds concurrent processes.

Whole:
Parts:

PHControl (LiguidLevelControl)
PHSensor, PHValve (LevelSensor,
InputValve)

Kind: Assembly

Rationale: Models a property of the Vat associated
with a control process
Separates essential function from
implementation mechanism

Properties: Encapsulation,

Mutual Inseparability,
External configuration

These two composite objects do not model tangible
objects bul concurrent system functions. Their parts
model the devices used in each control function.
Encapsulating the devices within each control object
separates cssential system functions from their
implementation, an approach consistent with the
separation of esscntial and implementation modelling
of Real-Time Structured Analysis and Design [Ward
and Mecllor 85]. Objects clcarly related to system goals
arc more stable than objects modelling physical
devices that arce part of the solution space. For
example, if it was rcquired 10 measure the pH via
multiple sensors to increase accuracy, the change
would be limited to the implementation of pHControl
and would not affect its external interface o the Vat.

7 Conclusions

Current object-oriented methods and languages are
not expressive cnough to represent the richness in
semantic propertics and development roles of
composile objects.

We have argued that treating composite objects
separalely from problem-domain class associations
and cxplicitly capturing their design role, as well as
their problem-domain semantics, helps to separate
analysis and design concerns and to document the
rationale for important modelling and design decisions
that might otherwisc be left unrecorded.

We have illustrated how whole-part associations
can model different types of problem-domain
relationships, and how object composition can be used
1o cvenly distribute structural, functional and control
complexity in a model.

A uselul spin-off of capturing the design properties
of composite objects explicitly in a model is to enable
checking of a mode! for semantic consislency between

391

the behavioural and structural view. For example,
scenarios of object interactions can be checked for
consistency with the stated structural properties
(whether the visibility properties are complied with,
whether creation and deletion of objects is compatible
with the separability, ownership and immutability
properties, etc.). CASE tools for OOD should
automate as much of this as possible.

The example used in this paper has illustrated the
analysis and design roles of composite objects
particularly applicable to the domain of embedded
monitoring and control systems with a fairly static
configuration. We believe more research is required to
analyse and streamline the use of composite objects in
more dynamic environments, where objccts and links
are frequently created and deleted at run-time. The
concepts of encapsulation and separability, in
particular, must be refincd to account for their
temporal dimension. It must be possible, for example,
to model the migration of objccls [rom onc composile
to another.

We also believe that many of the propertics that we
have classed as design properties, such as separability
and immutability, can apply to real-world entitics as
well as software objects. Thus they can be investigated
before software concerns are addressed. However,
since software objects ofien do not exhibit the same
properties as their real-world counterparts, we belicve
that a better than currently available understanding ol
the model transformation process that takes place
during design is required, in order to account for
differences between the analysis and design model.
The method presented here does not address such
issues, although it provides a framework in which
they can be explored.

Acknowledgements
I am grateful to Richard Mitchell for his collaboration

in the original design of the Bottlc Filling System and
for his tireless support and useful comments.

References

Atkinson C. 1991. Object-Oriented Reuse
Concurrency and Distribution. An Ada-based
approach. ACM Press. Addison-Wesley.

Booch G. 1991. Object oriented design with
applications. Benjamin Cummings.

Coad P. and Yourdon E. 1990. Object-oriented
analysis, 1st ed., Yourdon Press/Prentice-Hall.

Coad P. and Yourdon E. 1991. Object-oriented
analysis, 2nd ed., Yourdon Press/Prentice-Hall.

Coleman D., Hayes F. and Bear S. 1992. Introducing
ObjectCharts or how to use Statecharts in Object-
Oriented Design. [EEE Transactions in Software
Engineering, 18(1), 9-18

de Champeaux D. 1991. Object-Oriented Analysis and
Top-Down Software Development. Proceedings of the
1991 European Conference on Object-Oriented
Programming, Springer-Verlag, 360-376.

de Champecaux D., Lea D. and Faurc P. 1992. The
Process of Objcct-Oriented Design. Proceedings of
OOPSLA 92, ACM, 45-61.

Harel D. 1987. Statecharts: a Visual Formalism for
Complex Systems. Science of Computer
Programming, 8(3), 231-274.

Hartmann T., Jungclaus R. and Saake G. 1992.
Aggregation in a Bchaviour Oriented Object Model,
Proceedings of the 1992 European Conference on
Object-Oriented Programming, Springer-Verlag, 57-
77.

Hogg J. 1991. Islands: Aliasing Protection In Object-
Oriented Languages, Proceedings of OOPSLA 91,
ACM, pp. 271-285.

Hull R. and King R. 1987. Semantic Database
Modeclling: Survey, Applications and Research Issues.
ACM Computing Surveys, 19(3), September 1987.
Jacobson 1. 1992 Object-Oriented Software
Engineering. A Use Case Driven Approach. Addison-
Wesley.

Jungclaus R., Saake G. 1991. Formal Specification of
Object Systems, in TAPSOFT 91, Proceedings of the
International Joint Conference on Theory and Practice
of Software Development, Goos G. & Hartmanis J.
eds., Springer-Verlag, 60-82.

392

Kramer J., Magee J., Sloman M. and Dulay N. 1992.
Configuring object-based distributed programs in
REX. Software Engineering Journal March 1992,
139-149.

Monarchi D.E. and Puhr G.I. 1992. A Research
Typology for Object-Oriented Analysis and Dcsign.
Communications of the ACM, Septcmber 1992,
35(9), 35-47.

Odell J. 1992. Managing object complexity, part 11
composition. Journal of Object-Oriented
Programming,, 5(6), October 1992, 17-20.

Robinson P. ed. 1992. Object-oriented Design.
Chapman & Hall.

Rubin K. and Goldberg A., 1992. Objcct Behaviour
Analysis. Communications of the ACM, September
1992, 35(9), 48-62.

Rumbaugh J., Blaha M., Premerlani W., Eddy F. and
Lorensen W. 1991. Object-oriented Modeling and
Design. Prentice-Hall.

Ward P.T. and Mellor S.J. 1985. Structured
Development for Real-Time Systems. Vol. [-3.
Yourdon Press.

Winston M.E., Chaffin R. and Herrmann D. 1987. A
Taxonomy of Part-Whole Rclations. Cognitive
Science, 11, 417-444,

Wirfs-Brock R., Wilkerson L. and Wiecner L.1990.
Designing Object Oriented Software. Prentice-Hall,

393

